Integrating LID, Stream Enhancement, and Floodplain Functions in Urban Watersheds

Greg Jennings, PhD, PE President, Jennings Environmental Professor Emeritus, NC State University jenningsenv@gmail.com

Rocky Branch, NC State University

Urban Stream Syndrome (USS)

- Response to watershed changes
- Loss of natural functions & values
- Causes problems locally & downstream
- Requires systematic assessment & treatment

Symptoms of USS

- Erosion & incision
- Water quality decline
- Habitat loss
- Ecosystem degradation
- Flooding
- Land loss
- Infrastructure damage
- Recreation impaired
- Aesthetics impaired
- Economic loss

Causes of USS

- Watershed impervious
- Channelization
- Impoundments
- Diversions
- Floodplain filling
- Pollution discharges
- Sedimentation
- Stormwater runoff
- Utilities & culverts
- Buffer loss
- Neglect & Ignorance

Green Infrastructure

"integrated <u>system</u> of natural elements and LID practices that provide broad environmental benefits" (USEPA)

Maintenance Required!

Low Impact Development: "natural systems for infiltration,

evapotranspiration and harvesting of rainwater... to maintain or restore a <u>watershed's</u> hydrologic and ecological functions" (USEPA)

Stormwater Control Measures (SCMs):

- Bioretention cells
- Curb and gutter elimination
- Grassed swales
- Green parking design
- Infiltration trenches
- Inlet protection devices
- Permeable pavement
- Permeable pavers
- Rain barrels and cisterns
- Riparian buffers
- Sand and organic filters
- Soil amendments
- Stormwater planters
- Tree box filters
- Vegetated filter strips
- Vegetated roofs

Stream Enhancement

"implementing certain stream rehabilitation practices in order to improve water quality and/or ecological function" (NCDEQ)

Floodplains

"area inundated with water during high flows... needed for the watercourse to maintain natural biologic, geomorphic, and hydrologic functions" (ASFPM)

- Flood storage & conveyance
- Groundwater recharge & discharge
- Erosion & sediment control
- Pollution control
- Habitats
- Carbon storage
- Micro-climates
- Food production
- Recreation & aesthetics

Healthy Urban Watersheds (Systematic Approach)

- LID: Stormwater Control Measures (retention, treatment)
- Bio-Conveyance (stability, retention, treatment)
- Stream Enhancement (stability, ecology)
- Floodplain Functions (retention, treatment, ecology)

Rocky Branch, 2012 (6 years after restoration)

Goals

- Ecological conditions (habitats & water quality)
- Social conditions (recreation & aesthetics)
- Economic conditions (infrastructure & land value)
- Educate citizens & decision-makers

Daphne UT D'Olive Creek

Samford University Shades Creek

Rocky Branch, NCSU Campus, Raleigh, NC (Project Manager: Barbara Doll, PhD, PE, NCSU)

- SCMs (upland and in floodplain)
- Stream Restoration (5,000 ft perennial channel)
- Floodplain creation (2 to 4 x channel width)
- Riparian Buffer (50 ft native forest)

Stormwater Control Measures

- Bioretention and Bioconveyance
- Stormwater Wetlands/Ponds
- Outfall Energy Dissipation Basins
- Floodplain Wetlands
- Riparian Buffers

Stream Enhancement

- Channel Realignment
- Floodplain Excavation (2 to 4 x channel width)
- In-stream Structures (grade control, bank protection, habitat)
- Riparian Buffers

Rocky Branch Downstream near Pullen Road

Priority 2 (floodplain excavation, C channel replacing F) Entrenchment Ratio = W_{fpa} / W_{bkf} = 80/20 = 4

Floodplain flows several times each year

NCSU Rocky Branch Downstream at Pullen Road

T.S. Fay 27Aug08

T.S. Alberto 15Jun06

NCSU Rocky Branch Downstream at Pullen Road

2012

Stream Daylighting at IM Fields: Facing Downstream in 2008 before construction

Stream Daylighting at IM Fields: Facing Downstream in 2009 during construction

Stream Daylighting at IM Fields: Facing Downstream in 2009 during construction

Stream Daylighting at IM Fields: Facing Downstream in 2015 after construction

to

Auburn Town Creek Trib (2008)

2008

Project Mgmt: Auburn Univ
Funding: ADEM 319, USEPA
Design: Stantec, Jennings
Construction: North State Environmental

Vegetation: Auburn Univ

2007

Entrenchment Ratio = W_{fpa} / W_{bkf} = 180/10 = 18

2008

Town Creek Tributary

Education: Workshops & Tours

2016

Town Creek Tributary

Auburn Saugahatchee Creek (2008)

Project Mgmt: City of Auburn
Funding: City of Auburn
Design: Bidelspach, Jennings
Construction: North State Environmental

Vegetation: NSE

2007

2008

Multiple Log Vanes

Saugahatchee Creek

2009 January

2009 July

Photo Credit: Dan Ballard, Town of Auburn

Multiple Log Vanes: Saugahatchee Creek

Auburn Saugahatchee Trib (2013)

Project Mgmt: City of Auburn
Funding: City of Auburn
Design: Bidelspach, Jennings
Construction: North State Environmental

Vegetation: Auburn University

2013

2016

Samford University Shades Creek (2011)

2010

Project Mgmt: Samford Univ
Funding: Samford Univ
Design: LBYD, Jennings
Construction: North State Environmental

Vegetation: Auburn Univ, NSE

2011

Priority 3: Excavate narrow floodplain benches in confined corridor

ER = 1.4 W/d = 15 K = 1.02 S = 0.005

Construction: Jan, 2011

Entrenchment Ratio = W_{fpa} / W_{bkf} = 55/40 = 1.4

Erosion Control: Seed, Straw, Matting, Wood Stakes

In-Stream Structures (10): Boulder & Log

- Grade Control
- Bank Protection
- Sediment Transport
- Habitat

Log Vane (Grade Control J-Hook)

- 70-ft long log; 30-inch diameter; root wad attached
- 3 % arm slope; 20 degree angle
- Sealed with woven geotextile & backer log
- Back filled with river cobble, gravel, sand

Log Vane (Grade Control J-Hook)

Boulder Cross-Vanes

- 1 to 2 ton boulders; 3 % arm slope; 20 degree angle
- Throat extends through center half of channel
- Boulder footers; Sealed with non-woven geotextile
- Back filled with river cobble, gravel, sand

Boulder Cross-Vanes

Shades Creek Flood, March 2011

March 2011

September 2011

Vegetation – Streamside Forest

Native plants

- Grasses, shrubs, trees
- Live stakes, bare roots, containers

AFTER

Trussville Caraba River (2015)

2014

LBYD , Inc. North State Environmenta Jennings Environmental, L

2015

TOUR AGENDA: Projeotal Agriculture Git the formation for the Sen Activities Center Funding: City of Trussville 10:15 am — Walking tour of the ongoing Dealigna River Enhalementer Sectivities. Stream Structures (log and Construction: North State

Construction: North State boulder vanes enhanced sifflee Environmental Erosion and sediment control practices Vegetation: NSE management

Trussville Cahaba River (2016)

D'Olive Creek Watershed Restoration Projects

- Design to reduce erosion and provide ecological values
- Share ideas, techniques, and lessons learned
- Build capacity and understanding for solving problems
- Support sustainable communities

D'Olive Creek Watershed Restoration

Before 2014: Many projects to protect infrastructure

<u>2014-2018</u>: NFWF funding + other grants for watershed approach to reduce sediment loading to Mobile Bay

<u>2016 into Future:</u> Watershed stewardship to continue reducing stormwater runoff and sediment loading

Joes Branch (tributary to D'Olive Creek)

- Engineer: Thompson Engineering
- **Contractors:** Southern Excavating; North State Environmental

Sedimentation in wetlands of a tributary to Joe's Branch upstream of Town Center Avenue

Joes Branch: JB Step Pool (completed 2012)

Tiawassee Creek: Reaches TC1, TC2

Engineer: Goodwyn, Mills, Cawood

<u>Contractor:</u> North State Environmental (2016 construction)

Partnership with City of Daphne, CIAP, ADEM, EPA319, NFWF

Tiawassee Creek: Reaches TC1, TC2 (August, 2016)

Tiawassee Creek: Reaches TC1, TC2 (August, 2016)

D'Olive Creek: Reach D4-D6 (I-10 to US90)

Engineer: Goodwyn, Mills, Cawood Contractor: North State Environmental

2016 (following 2014 flood of record)

D'Olive Creek: Reach D4-D6, I-10 - US90 (May, 2016)

D'Olive Creek: Reach D4-D6, I-10 - US90 (Jun, 2016)

D'Olive Creek: Reach D4-D6, I-10 - US90 (Aug, 2016)

Enhancing Urban Watersheds: Final Thoughts

- <u>Systematic approach</u> using all Green Infrastructure Tools
- Community Engagement
- Permanent Easements
- Inspection, Maintenance, Adaptive Management

Thank you, Greg Jennings jenningsenv@gmail.com

